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4.4 Classical DSB-SC Modulators

To produce the modulated signal Ac cos(2πfct)m(t), we may use the follow-
ing methods which generate the modulated signal along with other signals
which can be eliminated by a bandpass filter restricting frequency contents
to around fc.

4.55. Multiplier Modulators [6, p 184] or Product Modulator[3, p
180]: Here modulation is achieved directly by multiplying m(t) by cos(2πfct)
using an analog multiplier whose output is proportional to the product of
two input signals.

• Such a multiplier may be obtained from

(a) a variable-gain amplifier in which the gain parameter (such as the
the β of a transistor) is controlled by one of the signals, say, m(t).
When the signal cos(2πfct) is applied at the input of this amplifier,
the output is then proportional to m(t) cos(2πfct).

(b) two logarithmic and an antilogarithmic amplifiers with outputs
proportional to the log and antilog of their inputs, respectively.

◦ Key equation:
A×B = e(lnA+lnB).
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4.56. When it is easier to build a squarer than a multiplier, we may use a
square modulator shown in Figure 25.

 

 m t   +

 cos 2 cc f t  

 2    BPH f  
 d t    x t  

Figure 25: Block dia-
gram of a square modu-
lator

Note that

d (t) = (m (t) + c cos (2πfct))
2

= m2 (t) + 2cm (t) cos (2πfct) + c2cos2 (2πfct)

= m2 (t) + 2cm (t) cos (2πfct) +
c2

2
+
c2

2
cos (2π (2fc) t)

2

22 0

Using a band-pass filter (BPF) whose frequency response is

HBP (f) =


g, |f − fc| ≤ B,
g, |f − (−fc)| ≤ B,

0, otherwise,
(59)

we can produce 2cgm(t) cos(2πfct) at the output of the BPF. In particular,
choosing the gain g to be (c

√
2)−1, we get m(t)×

√
2 cos(2πfct).

• Alternative, can use
(
m(t) + c cos

(
ωc
2 t
))3

.
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4.57. Another conceptually nice way to produce a signal of the form
Acm(t) cos(2πfct) is to

(1) multiply m(t) by “any” periodic and even signal r(t) whose period
is Tc = 1

fc

and then

(2) pass the result though a BPF used in (59).

𝑚 𝑡 BPF 𝑥 𝑡 𝑔𝑎 cos 2𝜋𝑓 𝑡 𝑚 𝑡×
𝑚 𝑡 𝑟 𝑡

𝑟 𝑡

To see how this works, recall that because r(t) is an even function, we
know that

r (t) = c0 +
∞∑
k=1

ak cos (2π(kfc)t) for some c0, a1, a2, . . ..

Therefore,

m(t)r (t) = c0m(t) +
∞∑
k=1

akm(t) cos (2π(kfc)t).

0 2

1
2

1
2

2

ℱ 

See also [5, p 157]. In general, for this scheme to work, we need

• a1 6= 0 period of r;

• fc > 2B (to prevent overlapping).

Note that if r(t) is not even, then by (50c), the resulting modulated signal
will have the form x(t) = a1m(t) cos(2πfct+ φ1).
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4.58. Switching modulator : An important example of a periodic and
even function r(t) is the square pulse train considered in Example 4.48.
Recall that multiplying this r(t) to a signal m(t) is equivalent to switching
m(t) on and off periodically.

1

𝑚 𝑡
𝑚 𝑡 𝑟 𝑡

BPF 𝑥 𝑡
2
𝜋 𝑔𝑚 𝑡 cos 2𝜋𝑓 𝑡

𝑟 𝑡
1
2

2
𝜋 cos 2𝜋𝑓 𝑡

2
3𝜋 cos 2𝜋 3𝑓 𝑡

2
5𝜋 cos 2𝜋 5𝑓 𝑡 ⋯

𝑚 𝑡 𝑟 𝑡
1
2𝑚 𝑡

2
𝜋𝑚 𝑡 cos 2𝜋𝑓 𝑡

2
3𝜋𝑚 𝑡 cos 2𝜋 3𝑓 𝑡

2
5𝜋𝑚 𝑡 cos 2𝜋 5𝑓 𝑡 ⋯

1

OFF ON OFF ON OFF ON OFF ON OFF ON OFF

0

𝐴
2

𝑓

𝐴
5𝜋

𝑓 3𝑓

𝐴
3𝜋

𝐴
𝜋

5𝑓5𝑓 3𝑓 𝑓
𝑓

𝐴

𝐵𝐵

𝑀 𝑓 ℱ 𝑚 𝑟

4.59. Switching Demodulator : The switching technique can also be
used at the demodulator as well.

1

LPFcos 2

1

OFF ON OFF ON OFF ON OFF ON OFF ON OFF

We have seen that, for DSB-SC modem, the key equation is given by
(41). When switching demodulator is used, the key equation is

LPF{m(t) cos(2πfct)× 1[cos(2πfct) ≥ 0]} =
1

π
m(t) (60)
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[5, p 162].
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Note that this technique still requires the switching to be in sync with the
incoming cosine as in the basic DSB-SC.
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4.5 (Standard) Amplitude modulation: AM

4.60. DSB-SC amplitude modulation (which is summarized in Figure 26)
is easy to understand and analyze in both time and frequency domains.
However, analytical simplicity is not always accompanied by an equivalent
simplicity in practical implementation.

1

×

 2 cos 2 cf t

Modulator

Message
(modulating signal)

Figure 26: DSB-SC modulation.

Problem: The (coherent) demodulation of DSB-SC signal requires the
receiver to possess a carrier signal that is synchronized with the incoming
carrier. This requirement is not easy to achieve in practice because the
modulated signal may have traveled hundreds of miles and could even suffer
from some unknown frequency shift.

4.61. If a carrier component is transmitted along with the DSB signal,
demodulation can be simplified.

(a) The received carrier component can be extracted using a narrowband
bandpass filter and can be used as the demodulation carrier. (There is
no need to generate a carrier at the receiver.)

(b) If the carrier amplitude is sufficiently large, the need for generating a
demodulation carrier can be completely avoided.

• This will be the focus of this section.
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Definition 4.62. For AM, the transmitted signal is typically defined as

xAM (t) = (A+m (t)) cos (2πfct) = A cos (2πfct)︸ ︷︷ ︸
carrier

+m (t) cos (2πfct)︸ ︷︷ ︸
sidebands

Assumptions for m(t):

(a) Band-limited to B; that is, |M(f)| = 0 for |f | > B.

(b) Bounded between −mp and mp; that is, |m(t)| ≤ mp.

4.63. Spectrum of xAM (t):

• Basically the same as that of DSB-SC signal except for the two addi-
tional impulses (discrete spectral component) at the carrier frequency
±fc.

◦ This is why we say the DSB-SC system is a suppressed carrier
system.

Definition 4.64. Consider a signal A(t) cos(2πfct). If A(t) varies slowly in
comparison with the sinusoidal carrier cos(2πfct), then the envelope E(t)
of A(t) cos(2πfct) is |A(t)|.

4.65. Envelope of AM signal : For AM signal, A(t) ≡ A+m(t) and

E(t) = |A+m(t)| .

See Figure 27.

Case (a) If ∀t, A(t) > 0, then E(t) = A(t) = A+m(t)

• The envelope has the same shape as m(t).

• Enable envelope detection: Extract m(t) from the envelope.
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Case (b) If ∃t, A(t) < 0, then E(t) 6= A(t).

• The envelope shape differs from the shape of m(t) because the
negative part of A+m(t) is rectified.

◦ This is referred to as phase reversal and envelope distortion.

t

t

t

t

t

A
A

Case (a) Case (b)

≡ 0 for	all	 ≡ 0 for	some	

AM cos 2

Figure 27: AM signal and its envelope [6, Fig 4.8]

Definition 4.66. The positive constant

µ ≡
max
t

(envelope of the sidebands)

max
t

(envelope of the carrier)
=

max
t
|m (t)|

max
t
|A|

=
mp

A

is called the modulation index.

• The quantity µ×100% is often referred to as the percent modulation.

74



 

 

 

Example: Modulation Index 
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Example 4.67. Consider a sinusoidal (pure-tone) messagem(t) = Am cos(2πfmt).
Suppose A = 1. Then, µ = Am. Figure 28 shows the effect of changing the
modulation index on the modulated signal.

1

Time

50% Modulation

0

−1.5

1.5

−0.5

0.5

Time

100% Modulation

0

−2

2

Envelope
Modulated Signal

Time

150% Modulation

0

−2.5

2.5

−0.5

0.5

Figure 28: Modulated signal in standard AM with sinusoidal message

4.68. It should be noted that the ratio that defines the modulation index
compares the maximum of the two envelopes. In other references, the nota-
tion for the AM signal may be different but the idea (and the corresponding
motivation) that defines the modulation index remains the same.

• In [3, p 163], it is assumed that m(t) is already scaled or normalized to
have a magnitude not exceeding unity (|m(t)| ≤ 1) [3, p 163]. There,

xAM (t) = Ac (1 + µm (t)) cos (2πfct) = Ac cos (2πfct)︸ ︷︷ ︸
carrier

+Acµm (t) cos (2πfct)︸ ︷︷ ︸
sidebands

.
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◦ mp = 1

◦ The modulation index is then

max
t

(envelope of the sidebands)

max
t

(envelope of the carrier)
=

max
t
|Acµm (t)|

max
t
|Ac|

=
|Acµ|
|Ac|

= µ.

• In [15, p 116],

xAM (t) = Ac

(
1 + µ

m (t)

mp

)
cos (2πfct) = Ac cos (2πfct)︸ ︷︷ ︸

carrier

+Acµ
m (t)

mp
cos (2πfct)︸ ︷︷ ︸

sidebands

.

◦ The modulation index is then

max
t

(envelope of the sidebands)

max
t

(envelope of the carrier)
=

max
t

∣∣∣Acµm(t)
mp

∣∣∣
max
t
|Ac|

=
|Ac|µmpmp
|Ac|

= µ.

4.69. Power of the transmitted signals.

(a) In DSB-SC system, recall, from 4.40, that, when

x(t) = m(t) cos(2πfct)

with fc sufficiently large, we have

Px =
1

2
Pm.

Therefore, all transmitted power are in the sidebands which contain
message information.

(b) In AM system,

xAM (t) = A cos (2πfct)︸ ︷︷ ︸
carrier

+m (t) cos (2πfct)︸ ︷︷ ︸
sidebands

.

If we assume that the average of m(t) is 0 (no DC component), then the
spectrum of the sidebandsm(t) cos(2πfct+θ) and the carrierA cos(2πfct+
θ) are non-overlapping in the frequency domain. Hence, when fc is suf-
ficiently large

Px =
1

2
A2 +

1

2
Pm.
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• Efficiency:

• For high power efficiency, we want small
m2
p

µ2Pm
.

◦ By definition, |m(t)| ≤ mp. Therefore,
m2
p

Pm
≥ 1.

◦ Want µ to be large. However, when µ > 1, we have phase
reversal. So, the largest value of µ is 1.

◦ The best power efficiency we can achieved is then 50%.

• Conclusion: at least 50% (and often close to 2/3[3, p. 176]) of
the total transmitted power resides in the carrier part which is
independent of m(t) and thus conveys no message information.

4.70. An AM signal can be demodulated using the same coherent demod-
ulation technique that was used for DSB. However, the use of coherent
demodulation negates the advantage of AM.

• Note that, conceptually, the received AM signal is the same as DSB-
SC signal except that the m(t) in the DSB-SC signal is replaced by
A(t) = A + m(t). We also assume that A is large enough so that
A(t) ≥ 0.

• Recall the key equation of switching demodulator (60):

LPF{A(t) cos(2πfct)× 1[cos(2πfct) ≥ 0]} =
1

π
A(t) (61)

We noted before that this technique requires the switching to be in
sync with the incoming cosine.
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4.71. Demodulation of AM Signals via rectifier detector: The receiver
will first recover A+m(t) and then remove A.

• When ∀t, A(t) ≥ 0, we can replace the switching demodulator by
the rectifier demodulator/detector . In which case, we suppress
the negative part of y(t) = xAM(t) using a diode (half-wave rectifier:
HWR).

◦ Here, we define a HWR to be a memoryless device whose input-
output relationship is described by a function fHWR(·):

fHWR (x) =

{
x, x ≥ 0,
0, x < 0.

• Surprisingly, this is mathematically equivalent to a switching demodu-
lator in (60) and (61).

• It is in effect synchronous detection performed without using a local
carrier [5, p 167].

• This method needs A(t) ≥ 0 so that the sign of A(t) cos(2πfct) will be
the same as the sign of cos(2πfct).

• The dc term A
π may be blocked by a capacitor to give the desired output

m(t)/π.
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196 AMPLITUDE MODULATIONS AND DEMODULATIONS 

Figure 4.10 
Rectifier detector 
for AM. 

[a+ m(t)] cos wet 

' 

' / 

[A + m(l)] cos wet 

VR(t) /[A + m(t)] 

-_f I 
" rr [A + 111(1)] 

Low-pass 
filter 

-· 

I 
-;-[A + m(1)] 

~ 

signal is multiplied by w(t). Hence, the half-wave rectified output vR(t) is 

VR(t) ={[A+ m(t)] COS Wet) w(t) (4.12) 

=[A+ m(t)] cos Wet [ ~ + ~ (cos (Vet- ~cos 3wet + ~cos Swet- · · ·)] (4.13) 

l 
= -[A+ m(t)] +other terms of higher frequencies (4.14) 

][ 

When vR(t) is applied to a low-pass filter of cutoff B Hz, the output is [A+ m(t)]jn, and all the 
other terms of frequencies higher than B Hz are suppressed. The de term Ajn may be blocked 
by a capac itor (Fig. 4.10) to give the desired output m(t) j n. The output can be doubled by 
using a full-wave rectifi er. 

It is interesting to note that because of the multip lication with ll '(l), rectifier detection is in 
effect synchronous detection performed without using a local carrier. The high carrier content 
in AM ensures that its zero crossings are periodic and the information about frequency and 
phase of the carrier at the transmitter is built in to the AM signal itself. 

Envelope Detector: fn an enve lope detector, the output of the detector follows the 
envelope of the modulated signal. The simple circuit show n in Fig. 4. lla functions as an 
envelope detector. On the positive cycle of the input signal, the input grows and may exceed 
the charged vo ltage on the capacity vc(t), turning on the diode and allowing the capacitor C 
to charge up to the peak voltage of the input signal cycle. As the input signal fall s below this 
peak value, it falls quickly below the capacitor voltage (which is very nearly the peak voltage), 
thus caus ing the diode to open. The capacitor now di scharges through the resi stor R at a slow 
rate (with a time constant RC). During the next positive cycle, the same drama repeats . As the 
input signal rises above the capacitor voltage, the diode conducts again. The capacitor again 
charges to the peak value of this (new) cycle. The capacitor discharges slowly during the cutoff 
period. 

During each positive cycle, the capacitor charges up to the peak voltage of the input 
signal and then decays slowly until the next positive cycle, as shown in Fig. 4 . ll b. Thus, the 
output voltage vc(t), close ly follows the (rising) envelope of the input AM signal. Equally 
important, the slow capacity discharge via the resistor R a llows the capacity vo ltage to follow 

Figure 29: Rectifier detector for AM [6, Fig. 4.10].

Figure 4.11 
Envelope 
detector for AM. 

4 .4 Bandwidth-Efficient Amplitude Modulations 197 

AM signal c 

(a) 

Envelope detector output 

RC too large \ 

····· K'f<K~--~. . Enve lop~.--· ... ·· · '( K I"' I"" 
~-~ . , .. · < i"" !'--, ., ~ ··· ···~" 

W'~ 

.... 
... -·· ' 

.. ··· · ... 
·· .. .. 

(b) ······ 

a declining envelope. Capacitor d ischarge between positi ve peaks causes a ripple s ignal of 
freque ncy We in the output. Thi s rip ple can be reduced by choosing a larger time constant 
RC so that the capac itor discharges very littl e between the positive peaks (RC » I /eve) . If 
RC were made too large, however, it would be imposs ible for the capac itor voltage to follow 
a fast declining e nvelope (Fig. 4 .11 b). Because the max imum rate of AM envelope dec line 
is do minated by the bandw idth B of the message signal m (r ) , the des ign criterion of RC 
should be 

I /eve « RC < I / (2Jr8) or 
I 

2Jr8 < - « (t!c 
RC 

The envelope detector output is vc(t ) = A+ m(r) with a ripple o f frequency W e . The de term 
A can be blocked oul by a capacitor or a s imple RC high-pass filte r. The ripple may be reduced 
further by another (low-pass) RC filter. 

4.4 BANDWIDTH-EFFICIENT AMPLITUDE 
MODULATIONS 

As seen from Fig. 4.12, the DSB spectrum (including suppressed carrier and AM) has two 
sidebands: the upper sideband (USB) and the lower sideband (LSB~both containing complete 
informatinn about the baseband signal m (r ). As a result , for a baseband signal m (t) with 
bandwidth B Hz, DSB modulations require twice the radio-frequency bandwidth to transmit. 

Figure 30: Envelope detector for AM [6, Fig. 4.11].
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4.72. Demodulation of AM signal via envelope detector :

• Design criterion of RC:

2πB � 1

RC
� 2πfc.

• The envelope detector output is A+m(t) with a ripple of frequency fc.

• The dc term can be blocked out by a capacitor or a simple RC high-pass
filter.

• The ripple may be reduced further by another (low-pass) RC filter.

4.73. AM Trade-offs:

(a) Disadvantages :

• Higher power and hence higher cost required at the transmitter

• The carrier component is wasted power as far as information trans-
fer is concerned.

• Bad for power-limited applications.

(b) Advantages :

• Coherent reference is not needed for demodulation.

• Demodulator (receiver) becomes simple and inexpensive.

• For broadcast system such as commercial radio (with a huge num-
ber of receivers for each transmitter),

◦ any cost saving at the receiver is multiplied by the number of
receiver units.

◦ it is more economical to have one expensive high-power trans-
mitter and simpler, less expensive receivers.

(c) Conclusion: Broadcasting systems tend to favor the trade-off by mi-
grating cost from the (many) receivers to the (fewer) transmitters.

4.74. References: [3, p 198–199], [6, Section 4.3] and [14, Section 3.1.2].
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4.6 Bandwidth-Efficient Modulations

4.75. We are now going to define a quantity called the “bandwidth” of a
signal. Unfortunately, in practice, there isn’t just one definition of band-
width.

Definition 4.76. The bandwidth (BW) of a signal is usually calculated
from the differences between two frequencies (called the bandwidth limits).
Let’s consider the following definitions of bandwidth for real-valued signals
[3, p 173]

(a) Absolute bandwidth: Use the highest frequency and the lowest fre-
quency in the positive-f part of the signal’s nonzero magnitude spec-
trum.

• This uses the frequency range where 100% of the energy is confined.

• We can speak of absolute bandwidth if we have ideal filters and
unlimited time signals.

(b) 3-dB bandwidth (half-power bandwidth): Use the frequencies
where the signal power starts to decrease by 3 dB (1/2).

• The magnitude is reduced by a factor of 1/
√

2.

(c) Null-to-null bandwidth: Use the signal spectrum’s first set of zero
crossings.

(d) Occupied bandwidth: Consider the frequency range in which X%
(for example, 99%) of the energy is contained in the signal’s bandwidth.

(e) Relative power spectrum bandwidth: the level of power outside
the bandwidth limits is reduced to some value relative to its maximum
level.

• Usually specified in negative decibels (dB).

• For example, consider a 200-kHz-BW broadcast signal with a max-
imum carrier power of 1000 watts and relative power spectrum
bandwidth of -40 dB (i.e., 1/10,000). We would expect the sta-
tion’s power emission to not exceed 0.1 W outside of fc± 100 kHz.
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Example 4.77.

f
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Example 4.79.
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Example 4.80. Message bandwidth and the transmitted signal bandwidth

1

f

f

f

f

B-B

fc-fc

(a) Baseband

(b) DSB-SC

(c) USB

(d) LSB

LS
B LSBU

SB

U
SB

U
SB

U
SB

LS
B LSB

Figure 31: SSB spectra from suppressing one DSB sideband.

4.81. BW Inefficiency in DSB-SC system: Recall that for real-valued base-
band signal m(t), the conjugate symmetry property from 2.30 says that

M(−f) = (M(f))∗ .

The DSB spectrum has two sidebands: the upper sideband (USB) and the
lower sideband (LSB), each containing complete information about the base-
band signal m(t). As a result, DSB signals occupy twice the bandwidth
required for the baseband.

4.82. Rough Approximation: If g1(t) and g2(t) have bandwidths B1 and
B2 Hz, respectively, the bandwidth of g1(t)g2(t) is B1 +B2 Hz.

This result follows from the application of the width property18 of con-
volution19 to the convolution-in-frequency property.

Consequently, if the bandwidth of g(t) is B Hz, then the bandwidth of
g2(t) is 2B Hz, and the bandwidth of gn(t) is nB Hz. We mentioned this
property in 2.42.

18This property states that the width of x ∗ y is the sum of the widths of x and y.
19The width property of convolution does not hold in some pathological cases. See [5, p 98].
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4.83. To improve the spectral efficiency of amplitude modulation, there
exist two basic schemes to either utilize or remove the spectral redundancy:

(a) Single-sideband (SSB) modulation, which removes either the LSB or
the USB so that for one message signal m(t), there is only a bandwidth
of B Hz.

(b) Quadrature amplitude modulation (QAM), which utilizes spectral re-
dundancy by sending two messages over the same bandwidth of 2B
Hz.

4.7 Single-Sideband Modulation

4.84. Transmitting both upper and lower sidebands of DSB is redundant.
Transmission bandwidth can be cut in half if one sideband is suppressed
along with the carrier.

Definition 4.85. Conceptually, in single-sideband (SSB) modulation,
a sideband filter suppresses one sideband before transmission. [3, p 185–186]

(a) If the filter removes the lower sideband, the output spectrum consists
of the upper sideband (USB) alone. Mathematically, the time domain
representation of this SSB signal is

xUSB(t) = m(t)
√

2 cos(2πfct)−mh(t)
√

2 sin(2πfct). (62)

where mh(t) is the Hilbert transform of the message:

mh(t) = H{m(t)} =
1

π

∫ ∞
−∞

m(τ)

t− τ
dτ = m(t) ∗ 1

πt
. (63)

(b) If the filter removes the upper sideband, the output spectrum consists
of the lower sideband (LSB) alone. Mathematically, the time domain
representation of this SSB signal is

xLSB(t) = m(t)
√

2 cos(2πfct) +mh(t)
√

2 sin(2πfct). (64)

Derivation of the time-domain representation is given in Section 4.9. More
discussion on SSB can be found in [3, Sec 4.4], [14, Section 3.1.3] and [5,
Section 4.5].
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4.8 Quadrature Amplitude Modulation (QAM)

Definition 4.86. In quadrature amplitude modulation (QAM ) or
quadrature multiplexing , two baseband real-valued signals m1(t) and
m2(t) are transmitted simultaneously via the corresponding QAM signal:

xQAM (t) = m1 (t)
√

2 cos (2πfct) +m2 (t)
√

2 sin (2πfct) .

 

 

 1m t  

Transmitter (modulator)  Receiver (demodulator) 

 1v t    LPH f    1m̂ t  

 2m t  
 2v t    LPH f    2m̂ t  

 2 cos 2 cf t  



 2 sin 2 cf t  



2   h t  
 y t   QAMx t  

Channel 

 2 cos 2 cf t  

 

 2 sin 2 cf t  

 

2  

Figure 32: QAM Scheme

• QAM operates by transmitting two DSB signals via carriers of the same
frequency but in phase quadrature.

• Both modulated signals simultaneously occupy the same frequency
band.

• The “cos” (upper) channel is also known as the in-phase (I ) channel
and the “sin” (lower) channel is the quadrature (Q) channel.

4.87. Demodulation : Under the usual assumption (B < fc), the two
baseband signals can be separated at the receiver by synchronous detection:

LPF
{
xQAM (t)

√
2 cos (2πfct)

}
= m1 (t) (65)

LPF
{
xQAM (t)

√
2 sin (2πfct)

}
= m2 (t) (66)
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To see (65), note that

v1 (t) = xQAM (t)
√

2 cos (2πfct)

=
(
m1 (t)

√
2 cos (2πfct) +m2 (t)

√
2 sin (2πfct)

)√
2 cos (2πfct)

= m1 (t) 2cos2 (2πfct) +m2 (t) 2 sin (2πfct) cos (2πfct)

= m1 (t) (1 + cos (2π (2fc) t)) +m2 (t) sin (2π (2fc) t)

= m1 (t) +m1 (t) cos (2π (2fc) t) +m2 (t) cos (2π (2fc) t− 90◦)

• Observe that m1(t) and m2(t) can be separately demodulated.

Example 4.88. (1)
√

2 cos (2πfct) + (1)
√

2 sin (2πfct)

Example 4.89. 3
√

2 cos (2πfct) + 4
√

2 sin (2πfct)

4.90. Suppose, during a time interval, the messages m1(t) and m2(t) are
constant. Consider the signal m1

√
2 cos (2πfct) +m2

√
2 sin (2πfct)

4.91. Sinusoidal form (envelope-and-phase description [3, p. 165]):

xQAM (t) =
√

2E(t) cos(2πfct+ φ(t)),

where

envelope: E(t) = |m1(t)− jm2(t)| =
√
m2

1(t) +m2
2(t)

phase: φ(t) = ∠ (m1(t)− jm2(t))
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Example 4.92. In a QAM system, the transmitted signal is of the form

xQAM (t) = m1 (t)
√

2 cos (2πfct) +m2 (t)
√

2 sin (2πfct) .

Here, we want to express xQAM(t) in the form

xQAM (t) =
√

2E(t) cos(2πfct+ φ(t)),

where E(t) ≥ 0 and φ(t) ∈ (−180◦, 180◦].
Consider m1(t) and m2(t) plotted in the figure below. Draw the corre-

sponding E(t) and φ(t).

1

1

-1

180
90

-90
-180

2

1

t

t

t

1

-1

t

4.93. m1

√
2 cos (2πfct) +m2

√
2 sin (2πfct)
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4.94. Complex form:

xQAM (t) =
√

2Re
{

(m(t)) ej2πfct
}

where20 m(t) = m1(t)− jm2(t).

• We refer to m(t) as the complex envelope (or complex baseband
signal) and the signals m1(t) and m2(t) are known as the in-phase
and quadrature(-phase) components of xQAM (t).

• The term “quadrature component” refers to the fact that it is in phase
quadrature (π/2 out of phase) with respect to the in-phase component.

• Key equation:

LPF


(

Re
{
m (t)×

√
2ej2πfct

})
︸ ︷︷ ︸

xQAM(t)

×
(√

2e−j2πfct
) = m (t) .

4.95. Three equivalent ways of saying exactly the same thing:

(a) the complex-valued envelope m(t) complex-modulates the complex car-
rier ej2πfct,

• So, now you can understand what we mean when we say that a
complex-valued signal is transmitted.

(b) the real-valued amplitude E(t) and phase φ(t) real-modulate the am-
plitude and phase of the real carrier cos(2πfct),

(c) the in-phase signal m1(t) and quadrature signal m2(t) real-modulate
the real in-phase carrier cos(2πfct) and the real quadrature carrier
sin(2πfct).

20If we use − sin(2πfct) instead of sin(2πfct) for m2(t) to modulate,

xQAM (t) = m1 (t)
√

2 cos (2πfct)−m2 (t)
√

2 sin (2πfct)

=
√

2 Re
{
m (t) ej2πfct

}
where

m(t) = m1(t) + jm2(t).
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4.96. References: [3, p 164–166, 302–303], [14, Sect. 2.9.4], [5, Sect. 4.4],
and [9, Sect. 1.4.1]

4.97. Question: In engineering and applied science, measured signals are
real. Why should real measurable effects be represented by complex signals?

Answer: One complex signal (or channel) can carry information about
two real signals (or two real channels), and the algebra and geometry of
analyzing these two real signals as if they were one complex signal brings
economies and insights that would not otherwise emerge. [9, p. 3 ]

4.9 More on Suppressed-Sideband Amplitude Modulation

4.98. There are a couple of important Fourier transform pairs21 that haven’t
been discussed earlier.

(a) For the signum function,

sgn(t) =

{
1, t > 0
−1, t < 0

}
F−−⇀↽−−
F−1

1

jπf
(67)

To remember this, simply note that d
dt sgn (t) = 2δ (t). Therefore,

F
{
d

dt
sgn (t)

}
= F {2δ (t)} ≡ 2. (68)

From the time differentiation property, we also have

F
{
d

dt
sgn (t)

}
= j2πfF {sgn (t)} (69)

Equating (68) and (69), we get (67). Note that such method is deceptively simple but does

not highlight the difficulties inherent in the functions involved.

(b) For the unit-step function, because u(t) = 1+sgn(t)
2 , we have

u(t)
F−−⇀↽−−
F−1

1

2
δ(f) +

1

j2πf
.

(c) Applying the duality theorem to (67), we get

1

πt
= h(t)

F−−⇀↽−−
F−1

H(f) = −j sgn(f) =
{
−j, f > 0
j, f < 0

=
{

1 · e−j
π
2 , f > 0

1 · ej
π
2 , f < 0

21Derivation of these pairs are not straight-forward. For those who are interested, please see B.L.
Burrows and D.J. Colwell (1990): The Fourier transform of the unit step function, International Journal
of Mathematical Education in Science and Technology, 21:4, 629–635
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4.99. Let’s define the right half and left half of M(f) as M+(f) and M−(f), respectively.
Observe that

M+ (f) ≡
{
M(f), f > 0
0, f < 0

}
= M (f)u (f) = M (f)

1

2
(1 + sgn (f)) (70)

From (63), applying the convolution-in-time property to the Hilbert transform of the message,
we have

m(t) ∗ 1

πt
= mh(t)

F−−−⇀↽−−−
F−1

Mh(f) = M(f)× (−j sgn(f)) . (71)

Replacing M(f) sgn(f) in (70) with jMh(f), we have

M+(f) =
1

2
(M(f) + jMh(f)) .

Similarly,

M− (f) ≡
{

0, f > 0
M(f), f < 0

}
= M (f)u (−f) = M (f)

1

2
(1− sgn (f)) =

1

2
(M (f)− jMh (f)) .

Now, by the frequency-domain construction (in Figure 31c),

XUSB (f) = AM+ (f − fc) +AM− (f − (−fc)) ,

=
A

2
(M (f − fc) + jMh (f − fc)) +

A

2
(M (f + fc)− jMh (f + fc)) ,

=
A

2
(M (f − fc) +M (f + fc))−

A

2j
(Mh (f − fc)−Mh (f + fc)) ,

.

With A =
√

2, the inverse Fourier transform is (62).

4.100. An SSB signal can be synchronously (coherently) demodulated
just like DSB-SC signals. For example, multiplication of a USB signal by√

2 cos(2πfct) shifts its spectrum to the left and right by fc, creating M(f)
around f = 0. Low-pass filtering of this signal yields the desired baseband
signal. The case is similar with LSB signals.
Mathematically,

xSSB (t)
√

2 cos (2πfct) =
(
m(t)

√
2 cos (2πfct)∓mh(t)

√
2 sin (2πfct)

)√
2 cos (2πfct)

= m(t) (1 + cos (2π (2fc) t))∓mh(t) sin (2π (2fc) t)

= m(t) +m(t) cos (2π (2fc) t)∓mh(t) sin (2π (2fc) t)

Observe that

(a) If m(t) is band-limited to B, then mh(t) is also band-limited to B because, from (71), we
know thatMh(f) = M(f)×(−j sgn(f)). Therefore, the LPF that eliminatesm(t) cos (2π (2fc) t)
will also eliminate mh(t) sin (2π (2fc) t).

(b) The product xSSB (t)
√

2 cos (2πfct) yields the baseband signal and another SSB signal with
twice the carrier frequency.
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4.101. An ideal Hilbert transformer (Hilbert phase shifter) is unrealizable
(or realizable only approximately). This is due to an abrupt phase change
of π at zero frequency.

Practical approximation of this ideal phase shifter still works fine when
the message m(t) has a dc null and very little low-frequency content.

Definition 4.102. In vestigial-sideband modulation (VSB) (or asym-
metric sideband [6]), one sideband is passed almost completely while just a
trace, or vestige, of the other sideband is included. [3, p 191–192]

4.103. In (analog) television video transmission, an AM wave is applied
to a vestigial sideband filter. This modulation scheme is called VSB plus
carrier (VSB + C). [3, p 193]

• The unsuppressed carrier allows for envelope detection, as in AM

◦ Distortionless envelope modulation actually requires symmetric side-
bands, but VSB + C can deliver a fair approximation.
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